157. The Revised Structure of the Norditerpenoid Alkaloid Peregrine

by Gabriel de la Fuente*, Lastenia Ruíz-Mesía, and Matías L. Rodriguez

Centro de Productos Naturales Orgánicos 'Antonio González', CSIC-Universidad de La Laguna, Ctra a la Esperanza, 2, E-38206 La Laguna, Tenerife

(22.VI.94)

The structure of peregrine (1), a norditerpenoid alkaloid isolated from *Delphinium peregrinum* var. *elongatum* Boiss., was revised on the basis of the ¹H-COSY, HMQC, HMBC, and ROESY NMR spectra and of the X-ray analysis of its parent alcohol 2. Some of the ¹³C-NMR resonances of 1 and the related alkaloids peregrine alcohol (2), 14-O-acetylperegrine (3), bicoloridine (4), bicoloridine alcohol (5), 6-O-acetylbicolorine (6), bicolorine (7), and 14-O-acetylbicolorine (8), were also reassigned.

1. Introduction. – While studying the alkaloids of *Delphinium peregrinum* var. *elongatum* Boiss., we isolated a new norditerpenoid alkaloid, peregrine (1), the structure of which was determined mainly by 1 H- and 13 C-NMR spectroscopy [1]. The clue to establish the configuration of the AcO group at C(6) as α was the assignment of the methine C-resonances at 42.4 and 56.4 ppm to C(5) and C(7), respectively, by comparison of the 13 C-NMR spectrum of 1 with those of related published norditerpenoid alkaloids [2] [3]. From a SFSD experiment, the 1-H signal at δ 2.72 (d, J = 7.2 Hz) was attributed to H–C(5), owing to its one-bond correlation with the 13 C-NMR signal at δ 42.4 (d). Since the H–C(5) signal was coupled with the 1-H signal at δ 5.22 (d, J = 7.2 Hz), the latter was

OCH₃

1
$$R^1 = CH_3$$
 $R^2 = Ac$ $R^3 = CH_3$ $R^4 = H$

2 $R^1 = CH_3$ $R^2 = H$ $R^3 = CH_3$ $R^4 = H$

2 $R^1 = CH_3$ $R^2 = H$ $R^3 = CH_3$ $R^4 = H$

3 $R^1 = CH_3$ $R^2 = Ac$ $R^3 = CH_3$ $R^4 = Ac$

4 $R^1 = H$ $R^2 = Ac$ $R^3 = CH_3$ $R^4 = H$

5 $R^1 = H$ $R^2 = H$ $R^3 = CH_3$ $R^4 = H$

6 $R^1 = H$ $R^2 = Ac$ $R^3 = H$ $R^4 = H$

7 $R^1 = H$ $R^2 = H$ $R^3 = H$ $R^4 = H$

8 $R^1 = H$ $R^2 = H$ $R^3 = H$ $R^4 = H$

ascribed to H-C(6) in β configuration (α for the AcO group) by reason of the ca. 20, 90, and 90° dihedral angles between $H_{\beta}-C(5)$ and $H_{\beta}-C(6)$, $H_{\beta}-C(5)$ and $H_{\alpha}-C(6)$, and $H_{\beta}-C(6)$ are solutions of the molecule.

Now in the light of new NMR data, and the X-ray analysis of peregrine alcohol (= 6-O-deacetylperegrine; 2), the configuration of the AcO group at C(6) was established as β for peregrine (1).

2. Results and Discussion. – HMQC [4], HMBC [5], and ROESY [6] experiments with peregrine (1) allowed a more reliable interpretation of its ¹H-NMR data.

In the ¹H-COSY spectrum of 1 (*Table 1*), the 1-H signal at δ 1.46 (s) gave a W coupling with the signal at 3.16 (s, 1 H), which in turn showed a one-bond connectivity with the methine C-resonance at 64.7 ppm for C(17) in the HMQC spectrum (*Table 2*). Moreover, in the HMBC experiment (*Table 2*) the 1-H s at δ 1.46 gave three-bond correlations with the resonances at δ 64.7 (d), 25.9 (q), and 57.6 (t), corresponding to C(17), C(18), and C(19), respectively. This information allows us to assign the s at δ 1.46 to H—C(5) unambiguously. On the other hand, the

Table 1. Scalar and S	natial Correlation of	f the Protons o	f Percerine (1)
Table L. Deman and D	punun Correnanon o	ine i rotons o	I I CICKING (II)

Proton	COSY	ROESY
H_{β} -C(2) H-C(10)	$H-C(9), H_{\alpha}-C(3), H_{\beta}-C(3)$	H_{β} -C(3), H -C(5), H_{β} -C(14), CH_3 O-C(1)
H_{α} -C(3)	H_{β} -C(3), H_{β} -C(2)	H_{β} -C(3), C H_3 (18)
H_{β} -C(3)	H_{α}^{f} -C(3), H_{β} -C(2)	H_{α} -C(3), H -C(5)
H-C(5)	H - C(17) (W)	$H-C(10)$, $H_{\beta}-C(3)$, $H_{\alpha}-C(6)$, $CH_{3}(18)$
H_{α} -C(6)	H-C(7)	$H-C(5), H-C(7), CH_3(18)$
H-C(7)	H_{α} -C(6)	H_{3} -C(6), $CH_{2}(20)$, $CH_{3}O$ -C(8)
H-C(9)	H-C(14), H-C(10)	$H-C(10), H_{\beta}-C(14)$
H_{r} -C(12)	H_8 -C(12)	H_{β} -C(12), H -C(17), $CH_{3}O$ -C(16)
H_{β} -C(12)	H_{π} -C(12), H -C(13)	H_a -C(12), H -C(13), H_θ -C(14)
H - C(13)	H_{β} -C(12), H_{β} -C(14)	H_{β} -C(12), H_{β} -C(14), CH_{β} O-C(16)
H_{R} – C(14)	H-C(9), H-C(13)	$H-C(10)$, $H-C(9)$, $H_{\beta}-C(12)$, $H-C(13)$
H - C(17)	H-C(5)(W)	$H-C(7), H_n-C(12), CH_2(20)$
$CH_3(18)$, , ,	H_{α} -C(3), H_{β} -C(3), H -C(5), H_{α} -C(6)
$CH_2(20)$	$CH_3(21)$	$H-C(7), H-C(17), CH_3(21)$
$CH_3(21)$	$CH_{2}(20)$	$H-C(17)$, $CH_2(19)_q$, $CH_2(20)$
$CH_3O-C(1)$	2	$H_a - C(12), H_b - C(12)$
$CH_3O-C(8)$		H-C(7)
$CH_3O-C(16)$		H-C(13)

Table 2. ¹H, HMQC, and HMBC NMR Data of Peregrine (1)^a)

Proton		Correlated C-atom		
		HMQC	НМВС	
H_{β} -C(12) H -C(10) $\left\{\right.$	1.97 (m)	26.5(t) $46.2(d)$	C(8), C(9), C(11), C(12), C(17)	
H_{x} -C(3)	1.58 (br. $d, J = 15$)	37.1(t)		
H_{β} -C(3)	1.20 (m)	37.1(t)	C(19)	
H-C(5)	1.46(s)	56.4 (d)	C(4), C(6), C(7), C(18), C(19)	
H_{α} -C(6)	5.22 (d, J = 7.2)	73.4(d)	C(7), C(8), C(11), CO	
H-C(7)	2.71 (d, J = 7.2)	42.4(d)	C(5), C(8), C(9), C(11), C(17)	
H-C(9)	3.04(t, J = 5.8)	44.6(d)	C(8), C(10), C(12), C(13), C(14), C(15)	
H_{α} -C(12)	2.23 (dd, J = 14.5, 5.5)	28.6(t)	C(10), C(11), C(14), C(16)	
H_B -C(12)	1.85(m)	28.6(t)	C(10), C(16)	
H - C(13)	2.33 (br. $t, J = 6.1$)	38.6(d)	C(9), C(10), C(14), C(15), C(16)	
H_{β} — C(14)	3.97 (dt, J = 5.6, 5.2)	75.5(d)	C(8), C(16)	
\dot{H} -C(17)	3.16(s)	64.7(d)	C(5), C(6), C(11), C(19)	
$CH_3(18)$	0.82(s)	25.9(q)	C(3), C(4), C(5), C(19)	
$CH_2(19)_a$	2.60 (d, J = 11.9)	57.6 (t)		
$CH_2(20)$	2.46(m)	49.3(t)	C(17), C(19), C(21)	
$CH_3(21)$	1.04(t, J = 7.1)	13.6(q)	C(20)	
$CH_3O-C(1)$	3.25(s)	56.0(q)	C(1)	
$CH_3O-C(8)$	3.07(s)	48.3 (q)	C(8)	
$CH_3O-C(16)$	3.34 (s)	56.4 (q)	C(16)	
Ac	2.04(s)	21.7(q)	CO	

Chemical shifts in ppm rel. to SiMe₄ (= 0 ppm); coupling constants J in Hz. C-Multiplicities were established by DEPT data.

s at δ 1.46 correlated with the methine C-resonance at 56.4 ppm in the HMQC spectrum, so this signal was readily attributed to C(5).

The 1-H $d(J=7.2~{\rm Hz})$ at δ 2.71 was assigned to H-C(7) on account of its three-bond connectivities with the C-resonances at δ 56.4 (d) and 48.2 (s), ascribed to C(5) and C(11), respectively, and the NOE's with $CH_2(20)$ and $CH_3O-C(8)$ in the ROESY spectrum ($Table\ 1$). Since the H-C(7) signal at δ 2.71 gave a one-bond correlation with the C-resonance at δ 42.4 (d) in the HMQC experiment, this signal was assigned to C(7).

The ¹H-COSY spectrum of 1 showed that the 1-H d at δ 5.22 (J = 7.2 Hz) was coupled with H-C(7). Furthermore, that signal gave a one-bond connectivity with the methine C-resonance at δ 73.4 in the HMQC spectrum and three-bond correlations with the C-resonances at δ 79.1 (s, C(8)), 48.2 (s, C(11)), and 170.2 (s, CO) in the HMBC spectrum. Consequently, the signal at δ 5.22 was assigned to H-C(6).

In essence, the NMR signals at δ 1.46 (s, 1 H) and 56.4 (d), 5.22 (d, J = 7.2 Hz, 1 H) and 73.4 (d), and 2.71 (d, J = 7.2 Hz, 1 H) and 42.4 (d) belong to CH(5), CH(6), and CH(7), respectively. Considering the J(H-C(6), H-C(7)) of 7.2 Hz, H-C(6) must be in α configuration, in agreement with the 10 and 110° dihedral angles for H-C(7) and H_{α}-C(6), and H-C(7) and H_{β}-C(6), respectively, observed in a *Dreiding* molecular model of 1. In addition, the ROESY spectrum (*Table 1*) showed spatial correlation between the angular CH_3 group and the corresponding signal for H-C(6), which corroborated the α configuration (β for the AcO group) established for H-C(6).

The ¹H-COSY, HMQC, HMBC, and ROESY NMR spectra of peregrine (1) allowed us to reassign certain of its previously published ¹³C-NMR data (*Table 3*) [1], and the comparison of spectra from compound to compound, taking into account known substituent effects, also permitted some already published C-resonances to be reassigned for

Table 3. ¹³ C-NMR Assignments for Peregrine (1), Peregrine Alcohol (2), 14-O-Acetylperegrine (3), Bicoloridine (4),
Bicoloridine Alcohol (5), 6-O-Acetylbicolorine (6), Bicolorine (7), and 14-O-Acetylbicolorine (8)a)

	1	2	3	4	5	6	7	8
C(1)	84.7	85.6	84.2	72.6	72.9	72.5	72.9	72.6
C(2)	26.5	26.5	27.1	29.7	29.6	28.9	29.7	29.4
C(3)	37.1	37.5	37.2	31.6	31.8	31.8	32.2	31.6
C(4)	34.5	34.6	34.2	32.8	32.6	33.1	32.8	32.6
C(5)	56.4	58.9	56.5	52.8	54.8	52.3	54.8	54.6
C(6)	73.4	73.0	73.1	72.3	72.5	72.7	72.0	72.4
C(7)	42.4	45.9	42.0	42.3	45.5	45.1	50.2	50.4
C(8)	79.1	80.9	78.5	79.9	81.8	74.6	76.0	76.2
C(9)	44.6	43.8	41.2	44.4	44.4	48.5	46.1	43.5
C(10)	46.2	46.3	46.0	44.4	43.5	44.3	44.4	44.0
C(11)	48.2	48.3	48.5	48.9	48.9	48.2	48.4	48.7
C(12)	28.6	28.5	28.6	30.6	30.3	29.7	29.7	29.7
C(13)	38.6	37.7	39.1	40.0	39.9	39.3	40.0	36.7
C(14)	75.5	75.2	76.3	75.9	75.8	76.1	76.1	77.3
C(15)	33.0	33.1	35.8	37.8	37.4	43.5	42.4	42.7
C(16)	82.5	82.4	83.6	83.3	83.0	81.9	82.4	82.2
C(17)	64.7	64.3	64.0	65.5	65.1	65.5	64.9	65.0
C(18)	25.9	26.0	26.1	27.3	27.5	27.3	27.4	27.5
C(19)	57.6	58.1	57.5	61.6	62.2	61.3	61.8	61.9
C(20)	49.3	49.6	48.5	48.3	48.6	48.4	48.4	48.4
C(21)	13.6	13.8	13.6	12.9	13.1	13.0	13.0	13.0
$CH_3O-C(1)$	56.0	56.3	56.0					
$CH_3O-C(8)$	48.3	48.6	48.0	48.0	48.5			
$CH_3O-C(16)$	56.4	56.5	56.5	56.4	56.6	56.3	56.3	56.1
CH_3CO	170.2		171.5 ^b)	170.9		170.8		170.7
CH ₃ CO	21.7		21.7 ^b)	21.5		21.7		21.4

[&]quot;) Chemical shifts in ppm rel. to Me₄Si (= 0 ppm); solvent CDCl₃.

b) The second AcO group showed signals at 171.5 and 21.4 ppm, respectively.

peregrine alcohol [1] (2), 14-O-acetylperegrine [1] (3), bicoloridine [7] (4), bicoloridine alcohol [1] (5), 6-O-acetylbicoloridine [8] (6), bicoloridine [7] (7), and 14-O-acetylbicolorine [9] (8; Table 3).

To confirm the structure emanated from the NMR data, an X-ray analysis of peregrine alcohol [1] (2) was carried out, since we could not obtain suitable crystals from peregrine (1) itself. The molecular structure of 2 is illustrated in the *Figure*. The geometry of the molecule is generally as expected for such fused ring systems [10], and the substituents are 1α -MeO, 6β -OH, 8-MeO, 14α -OH, and 16β -MeO.

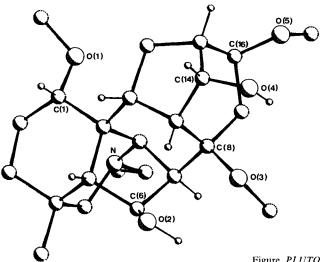


Figure. PLUTO-Generated view of 2

Table 4 presents the Cremer-Pople ring parameters [11] for rings A through F. Ring A is in a chair conformation, and rings B and C are slightly distorted chairs. Ring D is close to a 1,2-diplanar (envelope) conformation, with the C(15)-C(16) end flattened. The C(9)-C(8)-C(15)-C(16) and C(8)-C(15)-C(16)-C(13) dihedral angles are $-10.2(1.2)^{\circ}$ and $9.8(1.2)^{\circ}$, respectively. The ring-puckering coordinates for the five-membered rings E and F indicate an envelope conformation (C_s symmetry) for E, with the apex at C(14), and a slightly distorted twist conformation (C_s symmetry) for F.

Ring ^a)	q_2	ϕ_2	$ heta_2$	q_3
A	0.1746	114.2	162.5	-0.5548
В	0.2696	50.4	115.5	-0.5909
C	0.2376	143.6	158.4	-0.5996
D	0.5954	120.1	62.1	0.3146
E	0.4758	53.0		
F	0.5358	167.1		

Table 4. Cremer-Pople Ring-Puckering Parameters

a) Ring A: C(5), C(11), C(1), C(2), C(3), C(4); ring B: N, C(19), C(4), C(5), C(11), C(17); ring C: C(7), C(8), C(9), C(10), C(11), C(17); ring D: C(8), C(9), C(14), C(13), C(16), C(15); ring E: C(9), C(14), C(13), C(10); ring F: C(17), C(7), C(6), C(5), C(11).

There are only two intermolecular nonbonding distances less than 3.2 Å involving O-atoms, and these occur between $O(2) \cdots O(5)$ (2.93(1) Å through x+1/2, -y-1/2, -z+1 operation) and $O(4) \cdots O(2)$ (3.16(10) Å through x-1/2, -y-1/2, -z+1 operation). The first falls within the range of a weak H-bond interaction, with the $O(2)-H \cdots O(5)$ distance and angle being 2.09(1) Å and 140.2(4)°.

We thank the Spanish CICYT for financial support through the SEUI grant PB91-0131.

Experimental Part

NMR Spectra. The spectra were recorded on a *Bruker-AMX-400* spectrometer using CDCl₃ as solvent and SiMe₄ and solvent as internal standard. The DEPT and 2D-NMR experiments ¹H-COSY, HMQC, HMBC (*J* = 7 Hz), and ROESY (spin lock 700 ms) were carried out with standard pulse sequences furnishes in the *Bruker* manual.

X-Ray Diffraction Measurements of 2. Crystal Data: Orthorhombic space group $P2_12_12_1$ with cell dimensions a=12.701(1) Å, b=12.097(1) Å, c=14.458(1) Å; V=221.5(2) Å³, Z=4, $\rho_c=1.260$ gcm⁻³, F(000)=920. Intensity data were collected using monochromatic CuK_x radiation ($\lambda=1.5418$ Å) at r.t. on a Siemens-Stoe-AED computer-controlled four-circle diffractometer. From 1791 unique measured reflections ($3^{\circ} \le \theta \le 120^{\circ}$), 1688 with $I>3\sigma(I)$ were considered as observed. The structure was solved by direct methods [12]. H-Atoms were observed from difference electron density Fourier synthesis, with the expection of some of the Me protons that were calculated on the basis of configurational plausibility [13]. Full-matrix anisotropic refinement [14] for the non-H-atoms with the H-atoms added as fixed isotropic contribution converged to a final discrepancy index of R=0.072 (unit weight) for 69 atoms and 271 parameters. The final $(\Delta/\sigma)_{\rm max}$ was $0.24\cdot10^{-2}$ and the largest peak in a final difference map was 0.4 eÅ³. Scattering factors were taken from [15].

Lists of observed and calculated structure factors, crystal data, fractional atomic coordinates, anisotropic thermal parameters, and interatomic distances and angles were deposited at the Cambridge Crystallographic Data Center.

REFERENCES

- [1] G. de la Fuente, J. A. Gavin, R. Díaz-Acosta, J. A. Morales, Heterocycles 1988, 27, 1.
- [2] S. W. Pelletier, N. V. Mody, B. S. Yoshi, L. C. Schramm, 'Alkaloids: Chemical and Biological Perspectives', Ed. S. W. Pelletier, Wiley-Interscience, New York, 1984, Vol. 2, p. 205.
- [3] S.W. Pelletier, B.S. Joshi, 'Alkaloids: Chemical and Biological Perspectives', Ed. S.W. Pelletier, Springer-Verlag, New York, 1991, Vol. 7, p. 297.
- [4] A. Bax, S. Subramanian, J. Magn. Reson. 1986, 67, 565.
- [5] A. Bax, M. F. Summers, J. Am. Chem. Soc. 1986, 108, 2093.
- [6] A. Bax, D.G. Davis, J. Magn. Reson. 1985, 63, 207.
- [7] S. W. Pelletier, N. V. Mody, A. J. Jones, M. H. Benn, Tetrahedron Lett. 1976, 3025.
- [8] P. Kulanthaivel, M. Benn, M. Majar, Phytochemistry 1986, 25, 1511.
- [9] Y. Bai, M. Benn, Heterocycles 1990, 31, 1233.
- [10] B. S. Joshi, S. W. Pelletier, Heterocycles 1987, 36, 2503.
- [11] D. Cremer, J. A. Pople, J. Am. Chem. Soc. 1975, 97, 1354.
- [12] G. M. Sheldrick, 'SHELXS-86, Program for Crystal Structure Solution', University of Göttingen, Germany, 1986.
- [13] J. Fayos, M. Martinez-Ripoll, 'HSEARCH Program', Instituto Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain, 1980.
- [14] J. M. Stewart, P. A. Machin, C. W. Dickinson, H. L. Ammon, H. Heck, H. Flack, 'The XRAY76 System, Tech. Report TR-446', Computer Science Center, University of Maryland, College Park, Maryland, USA, 1980.
- [15] 'International Tables for X-Ray Crystallograpby', Eds. J.A. Ibers and W.C. Hamilton, The International Union of Crystallography, 1974, Vol. 1V.